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1. Introduction

Supersymmetry (SUSY) is considered as a fundamental symmetry in superstring theory.

It is also one of the most promising candidates for the physics beyond the standard model.

For example, it protects the weak scale against large radiative corrections. However the

low-energy particle contents and interactions do not respect SUSY, and thus it must be

broken above the weak scale.

The Scherk-Schwarz (SS) mechanism [1] of SUSY breaking has been revisited re-

cently as a phenomenologically interesting candidate for the physics beyond the standard

model [2 – 4] 1. The most simple setup in such context was constructed within the frame-

work of five-dimensional (5D) supergravity compactified on an orbifold S1/Z2. It was ar-

gued that the SS mechanism can be regarded as a spontaneous breaking of SUSY [3, 4, 6, 7].

This argument was based on the fact that the SS twist corresponds to a nonvanishing Wilson

line [6] for the auxiliary SU(2)U gauge field in the off-shell supergravity. This nonvanishing

Wilson line effect appears as the auxiliary component of the so-called radion superfield in

the N = 1 superspace description. A lot of analyses based on this description were done

in literatures [3, 4, 6, 7]. It was also discussed that boundary mass terms yield the same

spectrum as the SS breaking, and thus can be interpreted as an equivalent description to

the SS twist [8]. On the other hand, it has been argued that the SS twist leads to an

inconsistent theory on the warped geometry [9] if SUSY is a local symmetry.

1See also an early work [5] based on the compactification of superstring theory.
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In this paper we reinterpret the SS boundary condition for SU(2)R in the compactified

5D Poincaré supergravity as the twisted SU(2)U gauge fixing in 5D conformal supergrav-

ity. In such an interpretation, only the compensator hypermultiplet is relevant to the SS

breaking. Starting from a hypermultiplet compensator formalism of the 5D conformal su-

pergravity [10 – 13], we construct the 5D Poincaré supergravity with SS twist. By this

construction, various properties of the SS mechanism can be easily understood. Here, we

will explicitly show the Wilson line interpretation of the SS twist [6], the correspondence

between the twist and constant superpotentials [8], and the inconsistency of the twist in the

warped background [9] within our framework. We will also derive the N = 1 superspace

description of the SS twist based on works [14 – 17], in which the N = 1 superfields are

directly derived from the 5D superconformal multiplets.

In section 2, we first review the hypermultiplet compensator formulation of 5D con-

formal supergravity [10 – 13]. In section 3, we introduce the twisted SU(2)U gauge fixing

and derive the 5D Poincaré supergravity with SS twist. Here we show the Wilson line

interpretation and the correspondence between the SS twist and the boundary constant

superpotentials. We also demonstrate what happens if we consider the twist on the warped

geometry. In section 4, we derive the N = 1 superspace description of the SS twist within

our framework. Finally we summarize our results and give some discussions in section 5.

Some detailed expressions for the 5D conformal supergravity in our notation are exhibited

in appendix A based on refs. [10 – 13].

2. Review of hypermultiplet compensator formalism

In this section we briefly review the hypermultiplet compensator formulation of 5D confor-

mal supergravity derived in refs. [10 – 13]. The 5D superconformal algebra consists of the

Poincaré symmetry P , M , the dilatation symmetry D, the SU(2) symmetry U , the special

conformal boosts K, N = 2 supersymmetry Q, and the conformal supersymmetry S. We

use µ, ν, . . . as five-dimensional curved indices and m,n, . . . as the tangent flat indices. The

gauge fields corresponding to these generators XA = Pm, Mmn, D, Uij, Km, Qi, Si, are

respectively h A
µ = e m

µ , ωmn
µ , bµ, V ij

µ , f m
µ , ψi

µ, φi
µ, in the notation of refs. [10 – 13]. The

index i = 1, 2 is the SU(2)U -doublet index which is raised and lowered by antisymmetric

tensors εij = εij .

In this paper we are interested in the following superconformal multiplets:

• 5D Weyl multiplet: (e m
µ , ψi

µ, V ij
µ , bµ, vmn, χi, D),

• 5D vector multiplet: (M , Wµ, Ωi, Y ij)I ,

• 5D hypermultiplet: (Aα
i, ζα, Fα

i).

Here the index I = 0, 1, 2, . . . , nV labels the vector multiplets, and I = 0 component

corresponds to the central charge vector multiplet2. For hyperscalars Aα
i, the index α runs

as α = 1, 2, . . . , 2(p+q) where p and q are the numbers of the quaternionic compensator and

2Roughly speaking, the vector field in this multiplet corresponds to the graviphoton.
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the physical hypermultiplets respectively. In this paper we adopt the single compensator

case, p = 1, and separate the indices such as α = (a, α) where a = 1, 2 and α = 1, 2, . . . , 2q

are indices for the compensator and the physical hypermultiplets respectively.

The superconformal gauge fixing for the reduction to 5D Poincaré supergravity is given

by

D : N = M3
5 ≡ 1,

U : Aa
i ∝ δa

i, (p = 1)

S : NIΩ
Ii = 0,

K : N−1D̂mN = 0,

(2.1)

where N = CIJKM IMJMK is the norm function of 5D supergravity with a totally sym-

metric constant CIJK, and NI = ∂N/∂M I . The derivative D̂m denotes the superconformal

covariant derivative. Here and hereafter we take the unit that the 5D Planck scale is unity,

M5 = 1.

The invariant action for 5D supergravity on S1/Z2 is given as [12]

S =

∫

d4x

∫

dy (Lb + Lf + Laux + LN=1),

where Lb, Lf , Laux and LN=1 are the Lagrangians for the bosonic, fermionic, auxiliary

fields and the boundary Lagrangian respectively, which are shown in eqs. (A.1) and (A.2)

in appendix A. It was shown in refs. [12, 13] that the above off-shell supergravity can

be consistently compactified on an orbifold S1/Z2 by the Z2-parity assignment shown in

table 1 in appendix A.

3. SU(2)U gauge fixing and Scherk-Schwarz twist

In this section, starting from the hypermultiplet compensator formalism reviewed in the

previous section, we construct the 5D Poincaré supergravity with SS twist by introducing

the twisted SU(2)U gauge fixing. In the following subsections, we will explicitly show

the Wilson line interpretation, the correspondence between the twist and the boundary

constant superpotentials and the inconsistency of the twist on the warped geometry within

our framework.

First we recall the usual SS mechanism. The following arguments are based on the 5D

Poincaré supergravity on the orbifold S1/Z2 defined by

Φ(x,−y) = ±ZΦ(x, y),

where Z acts on the SU(2)R indices of fields and is chosen as Z = σ3 without a loss of

generality. The SS twist is defined as

Φ(x, y + 2πR) = TΦ(x, y),

where R is the radius of the fifth dimension y and T also acts on the SU(2)R indices that

is given by

T = e−2πi~ω·~σ.
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The twist vector ~ω = (ω1, ω2, ω3) determines the strength and the direction of the SS twist

and ~σ = (σ1, σ2, σ3) are the Pauli matrices. For Z = σ3, the consistency condition

TZT = Z, (3.1)

requires ω3 = 0 (except for some special cases [6]). We can go to the periodic field basis by

redefining fields [6, 7] as Φ → ei~ω·~σ f(y)Φ where ei~ω·~σ f(y) again acts on the SU(2)R indices

and f(y) satisfies

f(y + 2πR) = f(y) + 2π. (3.2)

3.1 Twisted SU(2)U gauge fixing

In the derivation of 5D Poincaré supergravity from the 5D conformal supergravity using the

hypermultiplet compensator, the SU(2)R symmetry is defined as the diagonal subgroup of

the direct product between the original SU(2)U gauge symmetry and SU(2)C which rotates

the compensator index a,

SU(2)U × SU(2)C → SU(2)R, (3.3)

through the U -gauge fixing Aa
i ∝ δa

i. The D- and U -gauge fixings in eq. (2.1) completely

fix the quaternionic compensator hyperscalar field as3

Aa
i ≡ δa

i

√

1 + Aα
iA

i
α . (3.4)

Then the compensator fermion ζa is fixed by

ζaδ
a
i = ζα

Aα
i

√

1 + A
β

jA
j

β

. (3.5)

However, if we consider a torus compactification of the fifth dimension y with the

radius R, we have inequivalent classes of the SU(2)U gauge fixing which is parameterized

by a twist vector ~ω as

Aa
i ≡

(

ei~ω·~σ f(y)
)a

i

√

1 + Aα
iA

i
α , (3.6)

and then

ζa

(

ei~ω·~σ f(y)
)a

i
= ζα

Aα
i

√

1 + A
β

jA
j

β

, (3.7)

where f(y) is a function satisfying eq. (3.2). This twist vector ~ω specifies the class of

torus compactified 5D Poincaré supergravity and ω1,2 6= 0 corresponds to the SS twist

parameter. In other words, from eq. (3.3), the SS boundary condition for all the fields

3Note that the equations of motion for the auxiliary fields D′ and χ′ in eq. (A.1) in appendix A result

in A
2 = 2N and A

ᾱ

iζα ≡ A
a

iζa −A
α

i
ζα = 0 respectively.

– 4 –



J
H
E
P
0
2
(
2
0
0
6
)
0
1
4

with SU(2)R index in the Poincaré supergravity is simply (equivalently) given by only

the compensator (SU(2)C) twisting in the framework of conformal supergravity [15]. We

usually choose f(y) = y/R, but here we do not specify its explicit form for the later

convenience. Note that the different choice of f(y) with the same ~ω gives the same physics,

because it corresponds to the U -gauge fixing parameter.

In the superconformal formulation, SU(2)U gauge field on-shell (without the boundary

action) is given by

V ij
µ sol = −

1

2N

(

2Aᾱ(i∇µA
j)

α + iNIJ Ω̄IiγµΩJj
)

, (3.8)

where NIJ = ∂N/∂M I∂MJ . The notations (i, j) and ᾱ in the superscript are defined

respectively in eqs. (A.4) and (A.5) in appendix A. Under the gauge fixing (3.6), we go to

the periodic field basis by

Aa
i → Ua

b(y)Ab
i, ζa → Ua

b(y)ζb, (3.9)

where

Ua
b(y) ≡

(

e−i~ω·~σ f(y)
)a

b
.

In this basis all the field (including the compensator) has a usual periodic boundary condi-

tion. The SU(2)U gauge fixing (3.6) reduces into trivial one (3.4), while eq. (3.8) becomes

V ij
y sol → −

1

2N

(

2Aᾱ(i∇yA
j)

α + iaIJ Ω̄IiγyΩ
Jj

)

+
1

N
(Uca∂yU

c
b)A

a(iAbj). (3.10)

Namely we find that the twisted SU(2)U gauge fixing (3.6) yields a field-independent shift

of SU(2)U gauge field V ij
y . It leads to a nonvanishing contribution to the Wilson line,

∫ 2πR

0
dy Vy

i
j = 2π i(~ω · ~σ)ij + · · · ,

where we have adopted the property (3.2) and the ellipsis denotes the contributions from

the physical fields. Then we find that the SS SUSY breaking can be interpreted as the

breaking caused by a nonvanishing Wilson line of SU(2)U gauge field. As shown in ref. [6]

(based on the linear multiplet compensator formalism [18]), V ij
y appears in the auxiliary

component of the so-called radion superfield in the N = 1 superspace description. We will

show this within our framework in section 4. (See eq. (4.6).)

Next we derive SUSY breaking terms induced by the SS twist in the periodic basis.

By the field redefinition (3.9), the compensator fixing conditions become normal ones (3.4)

and (3.5) respectively, while we have additional ~ω dependent terms which arise through

the y-derivatives of the compensator fields in the action shown in eq. (A.1) in appendix A.

They are given by

e−1Lω = f ′(y)(i~ω · ~σ)ab

{

εij(Aa
j∇4A

b
i −Ab

i∇4A
a
j) + 2iζ̄bγ4ζa

−4iψ̄i
mγ4γmζaAb

i + 2iψ̄(i
mγm4nψj)

n Ab
jA

a
i −

1

N
εjkV4

i
k(A

b
iA

a
j + Ab

jA
a
i)

}

−(f ′(y)|~ω|)2εijεabA
b
iA

a
j.
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where εij = εij = iσ2. We remark that the ~ω dependent gaugino mass will be generated

after integrating out the auxiliary field V4.

The V4 is included in the auxiliary Lagrangian in eq. (A.1) as

e−1LV
aux = −ηmn(Vm − Vm sol)

ij(Vn − Vn sol)ij ,

where Vm sol = eµ
mVµ sol is given by eq. (3.8). Then Lω on-shell becomes

e−1Lon-shell
ω = f ′(y)(i~ω · ~σ)ij

{

2iζ̄βγ4ζαA j
β A i

α (1 + A k
α Aα

k)
−1 + 4iψ̄i

mγ4γmζαA j
α

+
(

2iψ̄(i
mγm4nψj)

n − 2Aα(i∇4A
j)

α + iaIJ Ω̄Iiγ4Ω
Jj

)

(1 + A k
α Aα

k)

}

−2(f ′(y)|~ω|)2(A i
αA

α
i + (A i

αA
α
i)

2),

where we have applied the compensator fixings (3.4) and (3.5). Then the important part

for the low energy physics up to quadratic in fields is given by

e−1Lmass
ω = f ′(y)(i~ω · ~σ)ij

(

2iψ̄(i
mγm4nψj)

n + iaIJ Ω̄Iiγ4Ω
Jj

)

− 2(f ′(y)|~ω|)2A i
αA

α
i,

which contains the mass terms of the gravitino, the gauginos and the hyperscalars [2 –

4, 6, 7]. We remark that the cosmological constant proportional to |~ω|2 in Lω has been

cancelled on-shell by the equation of motion for V4.

3.2 Singular gauge fixing and boundary interpretation

As we mentioned above, an explicit function form of f(y) does not affect the physical

consequence because f(y) is just a gauge fixing parameter. We usually choose f(y) = y/R

which gives the simplest description. However in this section, motivated by the argument

of generalized symmetry breaking in ref. [8], we choose a gauge fixing parameter,

f(y) =
π

2

∑

n

(sgn(y − nπR) − sgn(−nπR)), (3.11)

where sgn(y) is the sign-function. Namely,

f ′(y) = π
∑

n

δ(y − nπR).

For this f(y), Lω becomes totally boundary terms. However we should be careful about

the singular structure of this gauge fixing parameter which can change physics depending

on the regularization. In the following we concentrate on the contribution from the Z2-

even fields which does not suffer from this singularity. We will briefly mention about the

correction from the Z2-odd fields at the end of this section.

In the situation that the compensator is not charged under the physical gauge field

(i.e. R-symmetry is not gauged), we introduce N = 1 invariant constant superpotentials

W at the orbifold fixed points (see eq. (A.2) in appendix A)

LN=1 =
∑

n

δ(y − nπR)
[

Σ3W
]

F

– 6 –
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=
∑

n

δ(y − nπR)e(4)W

×

[

2iAa=2
i=2(1 + iW I=0

4 /M I=0)F̃a=2
i=1 + 2Aa=2

i=2(∇4A + AV4 − 2iψ̄4ζ)a=2
i=1

−2ζ̄+PRζ α̂=1
+ + 4iAa=2

i=2ψ̄+ · γPRζ α̂=1
+ − 2Aa=2

i=2A
a=2
i=2ψ̄m+γmnPLψn+

]

+ h.c.,

where PR,L ≡ (1± γ5)/2, F̃
α
i ≡ Fα

i −Fα
i sol and Fα

i sol is shown in eq. (A.3) in appendix A.

The Z2-even fields ψm+ and ζ α̂
+ are defined in table 1 in appendix A. The symbol [· · ·]F

represents the F -term invariant formula in N = 1 superconformal tensor calculus [12] and

e(4) is the determinant of the 4D induced vierbein. Here let us see the relation between the

SS twist and the boundary constant superpotentials. Interestingly enough, we can show

that, provided W satisfies

W = π(ω2 + iω1), (3.12)

the constant superpotentials generate exactly the same terms as (the Z2-even part of)

the previous SS twist Lagrangian Lω after integrating out compensator auxiliary field Fa
i,

that is,

LW + Laux = Lω + Laux|Fa

i
→Fa

i
+Ca

i

, (3.13)

where

Ca
i = π

∑

n

δ(y − nπR)e−1e(4)

(

(M I=0)−1W I=0
4 12 + σ3

1 + (M I=0)−2(W I=0
4 )2

)a

b

(i~ω · ~σ)bcA
c
i.

The Lagrangian Laux is shown in eq. (A.1) in appendix A which consists of complete squares

of the auxiliary fields including Fa
i and V ij

y .

Therefore we conclude that, with the singular gauge fixing parameter (3.11), the Z2-

even part of the SS twist ~ω = (ω1, ω2, 0) is equivalent to the N = 1 invariant constant

superpotentials W = π(ω2 + iω1) at boundaries. From this correspondence between SS

twist and the constant superpotentials, we confirm that SUSY breaking caused by the

SS twist is not explicit (at least for the Z2-even part), because the boundary constant

superpotential is N = 1 invariant. We remark that this correspondence has been easily

found at the full supergravity level, not in the effective theory, thanks to our simplified

interpretation of SS twist.

We should comment that with a suitable regularization of the δ-function, the parity

odd part on the boundary modifies effectively the relation (3.12) as, e.g. W = tan(πω2) for

the σ2 twist ~ω = (0, ω2, 0), that was shown in ref. [6].

3.3 Scherk-Schwarz twist and AdS5 geometry

It was suggested in ref. [9] that the SS twist yields an inconsistency in the supergravity on

AdS5 geometry. Therefore, in this section, we consider the SS twist in the AdS5 background

within our framework of twisted SU(2)U fixing, and see what happens. It is known that the

– 7 –
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gauging of U(1)R symmetry by the graviphoton is necessary to realize the AdS5 geometry

keeping SUSY [19 – 21]. In fact, the negative cosmological constant is proportional to the

U(1)R gauge coupling in such a case. When a physical vector field WRµ gauges the U(1)C
subgroup of SU(2)C ,

DµA
a
i = ∂µA

a
i −AajVµij − (gRW R

µ )abA
b
i + · · · , (3.14)

where

(gRW R
µ )ab ≡ gRW R

µ (~q · i~σ)ab =

{

|~q|gRW R
µ (iσ1 sin θR + iσ2 cos θR)ab (gR : Z2-even)

|~q|gRW R
µ (iσ3)

a
b (gR : Z2-odd)

,

we shift the auxiliary SU(2)U gauge field by V N
µij ≡ Vµij + gRW R

µij [10]. Then the covariant

derivative (3.14) becomes

DµA
a
i = ∂µA

a
i + AajV N

µij − gRA
ajW R

µij − (gRW R
µ )abA

b
i + · · · . (3.15)

The third and fourth term in the right-hand side of eq. (3.15) cancels each other under

the normal U -gauge fixing (3.4), and consequently this W R
µ becomes the massless U(1)R

gauge field.

However, with the nonvanishing SS twist ~ω in the twisted U -gauge fixing (3.6), we find

that the compensator decouples from this W R
µ vector field in (3.15), when and only when

the condition

[(~q · i~σ), (~ω · i~σ)] = 0, (3.16)

is satisfied. Otherwise the U(1)R gauge field acquires a mass from the beginning (from

the superconformal-covariant kinetic term of the compensator), which breaks the unitarity

of this Poincaré supergravity. This means that the twist vector ~ω should satisfy (3.16) in

order to consistently gauge the U(1)R subgroup of SU(2)R symmetry defined by ~q.

To obtain the GP-FLP [20] (BKVP [21]) model for a supersymmetric warped brane

world, we need to gauge the U(1)R symmetry by the graviphoton with Z2-odd gauge

coupling4 gR, i.e. ~q = |~q|(0, 0, 1). From the above argument, the only possible twist vector

in this case is ~ω = 0, which does not cause SUSY breaking5.

On the other hand in the ABN model [19] in which the U(1)R symmetry is gauged by

the graviphoton with Z2-even gauge coupling gR, i.e. ~q = |~q| (sin θR, cos θR, 0), the possible

twist vector is ~ω = |~ω| (sin θR, cos θR, 0). In this case we find a possibility to consistently

introduce the SS twist in AdS5 background. However, it was pointed out in refs. [13, 18]

that the original ABN model for the SUSY Randall-Sundrum (RS) model [22] is not de-

rived from known off-shell formulations with the linear multiplet [18] or the hypermultiplet

compensator [13].

In the latter formalism, the ABN model is given by introducing constant superpo-

tentials W0 and Wπ at the orbifold fixed points y = 0 and y = πR respectively, as well

4The Z2-odd gauge coupling can be realized in the supergravity through the four-form mechanism [21].
5Note that ω3 = 0 due to TZT = Z in eq. (3.1).

– 8 –
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as the above ABN type gauging ~q = |~q| (sin θR, cos θR, 0) of the U(1)R symmetry. (Note

that this case does not correspond to the situation considered in section 3.2, since the

R-symmetry is now gauged.) As was shown in ref. [13], in this case, the superpotentials

generate boundary tensions which are proportional to the Z2-even R-gauge coupling gR.

To obtain the static AdS5 background, the boundary tensions and the bulk cosmological

constant generated also by gR must satisfy the so-called RS relation [22] resulting, e.g.

W0 = −Wπ = 1 for |~q| = 1 and θR = π/2. On the other hand, the superpotentials also

affect the on-shell SUSY transformations of the gravitino and the other fermionic fields.

From these transformations, we can determine the Killing spinor on the RS background,

and find when and only when W0 = −Wπ = 2 is satisfied, the Killing spinor exists and

SUSY is preserved in the slice of AdS5. Then the above two conditions on W0,Wπ conflict

with each other, and we conclude that the SUSY is spontaneously broken in the off-shell

formulation of the ABN model [13] from the beginning even without the SS twisting.

4. N = 1 superspace description

In this section, we describe SS SUSY breaking in the N = 1 superspace formalism, which is

directly derived from the 5D conformal supergravity [14, 15]. As we found in the previous

section, the SS twist yields inconsistent theory when the R-symmetry is gauged by some

physical gauge field. Then, in this section, we restrict ourselves to the case that the R-

symmetry is not gauged, which means that the background geometry is flat (neglecting

the backreaction from the VEVs of the physical fields). We first review the action shown

in ref. [17], and extend it to the case with twisted SU(2)U gauge fixing (3.6).

For simplicity, we consider the case that nV = 1, (p, q) = (1, 1) and the maximally

symmetric norm function, N = (M I=0)3 − M I=0(M I=1)2/2. Then, the superspace action

is written by the Lagrangian L = LC + LV +H + LN=1, where

LC = −2

∫

d4θ VE(Ξ̄Ξ + Ξ̄cΞc) −

{
∫

d2θ (Ξc∂yΞ − Ξ∂yΞ
c) + h.c.

}

, (4.1)

LV +H =

{
∫

d2θ
1

4
EWW + h.c.

}

+

∫

d4θ
E + Ē

2V 2
E

(

−∂yV − iΦS + iΦ̄S

)2

+

∫

d4θ VE

(

H̄e2gV H + H̄ce−2gV Hc
)

+

{
∫

d2θ Hc (∂y + m E − 2igΦS)H + h.c.

}

,

and LN=1 is the boundary Lagrangian for which we omit the explicit expressions. The

superfields (Ξ, Ξc) and (H, Hc) represent the N = 1 chiral multiplets which originate from

the compensator and the physical hypermultiplet respectively, and the superfields (V , ΦS)

are the N = 1 vector and chiral multiplets coming from the physical 5D vector multiplet.

The remaining superfields VE and E are a spurion-like vector superfield coming from the

fifth component of the 5D Weyl multiplet and a chiral superfield coming from the central

charge vector multiplet, respectively. Especially E corresponds to the radion superfield in

the ‘5D off-shell approach’ in the terminology of ref. [17]. Note that VE ' (E + Ē)/2 for
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the vanishing VEVs of physical fields. The mass scales are again measured in the unit of

M5 ≡ 1. Note that we have omitted the terms involving graviphoton (I = 0) multiplet and

a part of Chern-Simons terms, that are irrelevant to the following discussions.

The relation between the fields in the superconformal multiplets and the above super-

fields Ξ, Ξc, H, Hc, V , ΦS , VE and E is found in the appendix of ref. [17]. The (untwisted)

superconformal gauge fixings (2.1) for the compensator chiral superfields are rewritten as

ξ =

√

1 +
1

2
(|h|2 + |hc|2), ξc = 0,

χξ =
1

2ξ
(h̄χh + h̄cχc

h), χc
ξ = −

1

2ξ
(hχc

h + hcχh), (4.2)

where each component field is defined as Φ = φ − θχφ − θ2Fφ, Φc = φc − θχc
φ − θ2Fc

φ

(Φ = Ξ,H).

Now we consider the twisted SU(2)U-gauge fixing (3.6), which corresponds to the SS-

twisted Poincaré supergravity. In this case, thanks to our simplified interpretation, the

only change is the replacement of the compensator chiral superfields Ξ and Ξc by

(

Ξc

Ξ

)

→ e−i~ω·~σf(y)

(

Ξc

Ξ

)

. (4.3)

This replacement just generates additional terms in the action,

Ltwist = f ′(y)

{

(ω2 + iω1)

∫

d2θ Ξ2 + (ω2 − iω1)

∫

d2θ (Ξc)2 + h.c.

}

, (4.4)

which originate from the ∂yΞ and ∂yΞ
c terms in eq. (4.1).

We have to go to the on-shell description here, because Ξ, Ξc, and E (as well as the

graviphoton multiplet omitted here) become dependent superfields after the superconformal

gauge fixings [17] (see eq. (4.2) for Ξ and Ξc). However in the global SUSY limit (M5 → ∞),

these dependent superfields are reduced to spurion-like superfields,

Ξ ' 1 − θ2Fξ, Ξc ' −θ2Fc
ξ , E ' 1 − θ2FE , (4.5)

and we can formally keep the superspace structure. From eq. (4.5) together with the

additional Lagrangian term (4.4), we find

LC = −2(|FΞ|
2 + |Fc

Ξ|
2) − F̄EFΞ − F̄ΞFE + (∂yF

c
Ξ + h.c.)

+2f ′(y) {(ω2 + iω1)FΞ + h.c.}

= −2(|FΞ|
2 + |Fc

Ξ|
2) − F̄EFΞ − F̄ΞFE + (∂yF

c
Ξ + h.c.),

where

FE ≡ FE − 2f ′(y)(ω2 − iω1). (4.6)

Then we conclude that the effect of the SS twist is completely absorbed by the constant

shift of FE as expected. As discussed in the previous works [3, 4] we can easily obtain
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the soft SUSY breaking terms for the matter fields in LV +H by substituting FE = FE +

2f ′(y)(ω2 − iω1) in the F -component of the spurion-like superfield E. Note that all the

terms generated by integrating out FE , FΞ and Fc
Ξ are higher order in powers of 1/M5,

and the leading order effects of the SS SUSY breaking are obtained just by substituting

FE = 2f ′(y)(ω2 − iω1) in LV +H .

Finally we should remark that the correspondence between the SS twist and the con-

stant superpotentials discussed in the previous section is manifest in this superspace de-

scription, that is, eq. (4.4) is nothing but the N = 1 invariant constant superpotential.

For the case of the singular gauge fixing (3.11), this is the boundary constant superpo-

tential, as shown in the previous section at the full superconformal gravity level. (See the

relation (3.12).)

5. Conclusions and discussions

By noticing that the twisted SU(2)R boundary condition in S1-compactified 5D Poincaré

supergravity is equivalent to the twisted SU(2)U gauge fixing in 5D conformal supergrav-

ity, we have reexamined the SS mechanism of SUSY breaking in the latter terminology. In

this case, only the compensator hypermultiplet is relevant to the SS breaking, and various

properties of the SS mechanism can be easily understood. We realized the 5D Poincaré

supergravity with the SS twist starting from the hypermultiplet compensator formalism of

5D conformal supergravity [10 – 13]. Thanks to this simplified interpretation, we can ex-

plicitly show the Wilson line interpretation of the SS twist [6], the correspondence between

the twist and the constant superpotentials [8], and the quantum inconsistency of the twist

in the AdS5 background [9] at the full supergravity level. We have also derived the N = 1

superspace description of the SS twist based on our previous works [15 – 17].

We remark that the N = 1 superspace description of SS twist is possible only in the

‘5D off-shell approach’ in the terminology of ref. [17], in which the SS twist is translated

into the nonvanishing F -term of the radion superfield E. When we use the word “the

radion superfield”, we have to specify the context in which we work. For example, we have

the radion superfield also in the ‘4D off-shell approach’ of ref. [17], but the nonvanishing

F -term of this radion superfield does not realize the SS twist. This is because this approach

is possible only when the background preserves N = 1 SUSY. For the SUSY breaking case

such as the SS-twisted supergravity, we are forced to work in the 5D off-shell approach, in

which the radion superfield is a spurion-like superfield.

As shown in section 3.3, if the compensator is charged under some gauge field including

the graviphoton (i.e. the R-symmetry is gauged), the SS twist generates a mass for the

corresponding gauge field without the Higgs mechanism, except for the case of ABN type

gauging [19]. This is the reason why the SS twist results in an inconsistent theory in

the AdS5 background [9]. However, this does not mean that the constant superpotentials

cannot be introduced at the fixed points of orbifold in the AdS5 background, because the

correspondence between the SS twist and the constant superpotentials shown in section 3.2

is only valid without the R-gaugings. Indeed the R-gauge field does not receive a mass

from the constant superpotential. In such a sense, the constant superpotential belongs to a

– 11 –



J
H
E
P
0
2
(
2
0
0
6
)
0
1
4

much wider class of deformation parameter than the SS twist in 5D supergravity on S1/Z2

orbifold.

Then it may be interesting if we consider the boundary constant superpotentials with

the R-symmetry gauged by the Z2-odd graviphoton through the Z2-odd gauge coupling

(GP-FLP type gauging [20]), which can not be resembled by SS twist. This possibility is

studied in the global SUSY limit in ref. [3]. If the R-gauge coupling is Z2-even (ABN type

gauging), the SS twist is also allowed as shown in section 3.3, and the combination of the

twist and the constant superpotentials may result in some nontrivial on-shell supergravi-

ties. We expect that this case may be related to the on-shell models with detuned brane

tensions [23]. On the other hand, for the R-symmetry gauged by the Z2-even physical vec-

tor field [24], we can not introduce any constant superpotential because the superpotential

must have nonvanishing R-charge at boundaries in this case.

One of the advantages of our derivation of SS-twisted Poincaré supergravity is that,

in addition to its simplicity, it is based on the superconformal formulation which can

interpolate various frames (such as the so-called Einstein frame or string frame), or even

various on-shell supergravities that are physically different from each other. It is well

known that the superconformal formulation is indeed powerful in four dimensions. Our

method is expected to be useful if we treat the SS-twisted 5D Poincaré supergravity as an

effective theory of further higher-dimensional theory such as, e.g. the eleven-dimensional

supergravity. For the eleven-dimensional supergravity compactified on S1/Z2 times Calabi-

Yau three-fold, it is known that the effective 5D supergravity is derived by introducing two

compensator hypermultiplets [12] in 5D conformal supergravity. This will be one of the

extensions of this paper in future works.
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A. Invariant action in hypermultiplet compensator formalism

In this appendix we review the invariant action derived in refs. [10 – 13] for the relevant

multiplets to this paper.

The action for 5D supergravity on S1/Z2 orbifold is given by [12]

S =

∫

d4x

∫

dy (Lb + Lf + Laux + LN=1),

where Lb, Lf , Laux and LN=1 are the Lagrangians for the bosonic, fermionic, auxiliary

fields and the boundary Lagrangian, respectively given by

e−1Lb = −
1

2
NR −

1

4
NaIJF I

µνFµνJ +
1

2
NaIJ∇

mM I∇mMJ +
1

2
N IJY ij

I YJij

+∇mAᾱ
i∇mA i

α + Aᾱ
i(g

2M2) β
α A i

β + N−1(Aᾱi∇aA
j

α )2
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+
1

8
e−1cIJKελµνρσW I

λ

(

F J
µνFK

ρσ+
1

2
g[Wµ,Wν ]JFK

ρσ+
1

10
g2[Wµ,Wν ]

J [Wρ,Wσ]K
)

,

e−1Lf = −2iN ψ̄µγµνρ∇νψρ + 2iNaIJ Ω̄I∇/ΩJ − 2iζ̄ ᾱ(∇/ + gM)ζα

−2iAᾱ
i∇nAαjψ̄

(i
m γmnkψ

j)
k + 2iaIJA

ᾱ
i∇aAαjΩ̄

I
i γ

aΩJ
j − 4i∇nA

ᾱ
iψ̄

i
mγnγmζα

+N (ψ̄mψn)(ψ̄kγmnklψl + ψ̄mψn) + N (aIJ Ω̄IiγaΩ
Jj)2 − igNI [Ω̄,Ω]I

+
1

8
(ψ̄kγmnklψl + 2ψ̄mψn + aJKΩ̄JγmnΩK + ζ̄ ᾱγmnζα)2

+
i

4
NIF

I
mn(W )(ψ̄kγ

mnklψl + 2ψ̄mψn + aJKΩ̄JγmnΩK + ζ̄ ᾱγmnζα)

+iNaIJ ψ̄m(γ · F I(W ) − 2∇/M I )γmΩJ

−2NaIJ(Ω̄Iγmγnkψm)(ψ̄nγkΩ
J) + 2NaIJ(Ω̄Iγmγnψm)(ψ̄nΩJ)

+
1

4
iNIJKΩ̄Iγ · F J(W )ΩK −

2

3
(Ω̄IγmnΩJ ψ̄mγnΩK + ψ̄i · γΩIjΩ̄J

(iΩ
K
j)),

e−1Laux = D′(A2 + 2N ) − 8iχ̄
′iAᾱ

iζα −
1

2
NIJ(Y Iij − Y Iij

sol )(Y J
ij − Y J

ij sol)

+2N (v − vsol)
mn(v − vsol)mn −N (Vµ − Vsol µ)ij(V µ − V µ

sol)ij

+(1 − W I=0
µ W I=0µ/(M I=0)2)(F ᾱ

i −F ᾱ
i sol)(F

i
α −F i

α sol), (A.1)

and

LN=1 =
∑

l=0,π

Λlδ(y − yl)
(

−3
2 [ΣΣ̄e−K(l)(S,S̄)/3]D

+[f
(l)
IJ (S)W IαW J

α ]F + [Σ3W (l)(S)]F

)

. (A.2)

Here we have used some expressions defined as

Fα
i sol = −M I=0(gtI=0)

α
βA

β
i,

V ij
sol m = −

1

2N

(

2Aᾱ(i∇mA j)
α − iNIJ Ω̄IiγmΩJj

)

,

vsol mn = −
1

4N

{

NIF
I
mn(W ) − i

(

6N ψ̄mψn + ζ̄ ᾱγmnζα −
1

2
NIJΩ̄IγmnΩJ

)}

,

Y Iij
sol = N IJY ij

J , Fα
sol i = M I=0(gtI=0)

α
βA

β
i,

Y ij
I = 2A (i

α (gtI)
ᾱβA

j)
β + iNIJKΩ̄JiΩKj, (A.3)

and D′, χi′ are shifted auxiliary fields from D, χi in the Weyl multiplet respectively for

which we omit the explicit form (see ref. [12]). The notation A(iBj) is defined as

A(iBj) =
1

2
(AiBj + AjBi). (A.4)

The indices I, J, . . . = 0, 1, 2, . . . , nV label the vector multiplets, and I = 0 component

corresponds to the central charge vector (almost graviphoton) multiplet. The gauge kinetic

mixing aIJ is calculated as

aIJ ≡ −
1

2

∂2

∂M I∂MJ
lnN = −

1

2N

(

NIJ −
NINJ

N

)

,
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Weyl multiplet

Π = +1 e
m

µ , e 4
y , ψµ+, ψy−, ε+, η−, bµ, V

(3)
µ , V

(1,2)
y , v4m, χ+, D

Π = −1 e 4
µ , e

m
y , ψµ−, ψy+, ε−, η+, by, V

(3)
y , V

(1,2)
µ , vmn, χ−

Vector multiplet

Π(M) M, Wy, Y (1,2), Ω−

−Π(M) Wµ, Y (3), Ω+

Hypermultiplet

Π(A2α̂−1
i=1 ) A2α̂−1

i=1 , A2α̂
i=2, F

2α̂−1
i=2 , F2α̂

i=1, ζ α̂
+

−Π(A2α̂−1
i=1 ) A2α̂−1

i=2 , A2α̂
i=1, F

2α̂−1
i=1 , F2α̂

i=2, ζ α̂
−

Table 1: The Z2 parity assignment. The underbar means that the index is 4D one. The subscript

± of the SU(2) Majorana spinors is defined as, e.g. ψ+ = ψi=1
R + ψi=2

L and ψ
−

= i(ψi=1
L + ψi=2

R )

where ψR,L = (1 ± γ5)ψ/2, except for ζα̂
+ = i(ζα=2α̂−1

L + ζα=2α̂
R ) and ζα̂

−

= ζα=2α̂−1

R + ζα=2α̂
L

(α̂ = 1, . . . , p + q).

where N is the norm function of 5D supergravity explained in section 2. The nV + 1

gauge scalar fields M I are constrained by D gauge fixing shown in eq. (2.1) resulting nV

independent degrees of freedom.

For hyperscalars Aα
i, the index i = 1, 2 is the SU(2)U -doublet index and α = 1, 2, . . . ,

2(p + q) where p and q are the numbers of the quaternionic compensator and physical

hypermultiplets respectively. The notation ᾱ in the action stands for

Aᾱ
i = d α

β Aβ
i, (A.5)

where d β
α ≡ diag(12p,−12q).

It was shown in ref. [12, 13] that the above off-shell supergravity can be consistently

compactified on an orbifold S1/Z2 by the Z2-parity assignment shown in table 1 without

a loss of generality. When the fifth dimension is compactified on such orbifold S1/Z2, we

generically have the boundary N = 1 invariant action LN=1 with the constant Λ0,π at the

orbifold fixed points (y0, yπ) = (0, πR) as shown in eq. (A.2). In the boundary action, Σ is

the 4D N = 1 compensator chiral multiplet with the Weyl and chiral weight (w,n) = (1, 1)

induced by the 5D compensator hypermultiplet, while S and W Iα stand for generic chiral

matter and gauge (field strength) multiplets with (w,n) = (0, 0) at the boundaries which

come from either bulk fields or pure boundary fields. Here the symbols [· · ·]D and [· · ·]F
represent the D- and F -term invariant formulae, respectively, in the N = 1 superconformal

tensor calculus [12].

Without the boundary N = 1 action LN=1, the auxiliary fields on-shell are given by

Vµ = Vsol µ, vmn = vsol mn, Y Iij = Y Iij
sol , Fα

i = Fα
sol i, and Laux finally vanishes on-shell,

e−1Lon-shell
aux = 0.
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